
Remote Sensing of Environment 178 (2016) 15–30

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Comparison of satellite reflectance algorithms for estimating
chlorophyll-a in a temperate reservoir using coincident hyperspectral
aircraft imagery and dense coincident surface observations
Richard Beck a,⁎, Shengan Zhan a, Hongxing Liu a, Susanna Tong a, Bo Yang a,Min Xu a, Zhaoxia Ye a, YanHuang a,
Song Shu a, Qiusheng Wu a, Shujie Wang a, Kevin Berling a, Andrew Murray a, Erich Emery b, Molly Reif c,
Joseph Harwood c, Jade Young d, Christopher Nietch e, Dana Macke e, Mark Martin f, Garrett Stillings f,
Richard Stump f, Haibin Su h

a Department of Geography, University of Cincinnati, Cincinnati, OH 45221, USA
b U.S. Army Corps of Engineers, Great Lakes and Ohio River Division, Cincinnati, OH 45202, USA
c U.S. Army Corps of Engineers, ERDC, JALBTCX, Kiln, MS 39556, USA
d U.S. Army Corps of Engineers, Louisville District, Water Quality, Louisville, KY 40202, USA
e U.S. Environmental Protection Agency, Cincinnati, OH 45268, USA
f Kentucky Department of Environmental Protection, Division of Water, Frankfort, KY 40601, USA
g National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, USA
h Department of Physics and Geosciences, Texas A&M Kingsville, Kingsville, TX 78363-8202, USA
⁎ Corresponding author.
E-mail addresses: richard.beck@uc.edu (R. Beck), zhan

hongxing.liu@uc.edu (H. Liu), susana.tong@uc.edu (S. Ton
(B. Yang), xum4@mail.uc.edu (M. Xu), yeza@ucmail.uc.ed
huang2y2@ucmail.uc.edu (Y. Huang), shusg@mail.uc.edu
(Q. Wu), wang2sj@mail.uc.edu (S. Wang), berlinkj@mail.u
murraya2@mail.uc.edu (A. Murray), erich.b.emery@usace
molly.k.reif@usace.army.mil (M. Reif), joseph.h.harwood@
jade.l.young@usace.army.mil (J. Young), nietch.christophe
macke.dana@epa.gov (D. Macke), mark.martin@ky.gov (M
garrett.stillings@ky.gov (G. Stillings), richard.stumpf@noa
haibin.su@tamuk.edu (H. Su).

http://dx.doi.org/10.1016/j.rse.2016.03.002
0034-4257/© 2016 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 May 2015
Received in revised form 7 February 2016
Accepted 1 March 2016
Available online 10 March 2016
We compared 10 established and 2 new satellite reflectance algorithms for estimating chlorophyll-a (Chl-a) in a
temperate reservoir in southwest Ohio using coincident hyperspectral aircraft imagery and dense coincident sur-
face observations collected within 1 h of image acquisition to develop simple proxies for algal blooms in water
bodies sensitive to algal blooms (especially toxic or harmful algal blooms (HABs)) and to facilitate portability be-
tween multispectral satellite imagers for regional algal bloom monitoring. All algorithms were compared with
narrow band hyperspectral aircraft images. These images were subsequently upscaled spectrally and spatially
to simulate 5 current and near future satellite imaging systems. Established and new Chl-a algorithms were
then applied to the synthetic satellite images and compared to coincident surface observations of Chl-a collected
from 44 siteswithin 1 h of aircraft acquisition of the imagery.We found several promising algorithm/satellite im-
ager combinations for routine Chl-a estimation in smaller inland water bodies with operational and near-future
satellite systems. The CI, MCI, FLH, NDCI, 2BDA and 3 BDA Chl-a algorithms worked well with CASI imagery. The
NDCI, 2BDA, and 3BDAChl-a algorithmsworkedwellwith simulatedWorldView-2 and 3, Sentinel-2, andMERIS-
like imagery. NDCI was themost widely applicable Chl-a algorithmwith good performance for CASI, WorldView
2 and 3, Sentinel-2 and MERIS-like imagery and limited performance with MODIS imagery. A new fluorescence
line height “greenness” algorithm yielded the best Chl-a estimates with simulated Landsat-8 imagery.
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1. Introduction

Blooms of cyanobacteria may release toxins in response to yet to be
determined environmental triggers, although high nutrient and light
levels appear important controls on toxin production (Ohio EPA,
2012). According to the U.S. Army Corps of Engineers (USACE) and
U.S. Geological Survey (USGS) there has been a noticeable increase in
problems associated with harmful algal blooms (HABs). (Graham,
2006; Linkov, Satterstrom, Loney, & Steevans, 2009). HABs are now a
global problem in 45 countries worldwide and have been implicated
in animal deaths in at least 27 US states (Graham, 2006). HABs produce
dermatoxins, hepatoxins and neurotoxins (USEPA, 2012). Contact can
cause liver and kidney toxicity andneurotoxicity resulting in headaches,
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Fig. 1. Photographs of harmful (toxic) Microcystis algae blooms on the Ohio River (22
August 2008) and in Harsha (East Fork) Lake (30 May 2012). The Ohio River and
contributing inland reservoirs such as Harsha Lake are primary sources of drinking
water for more than 5 million people (photo credits: Ohio EPA and United States EPA).
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numbness, dizziness, difficulty breathing and in rare cases, death
(Linkov et al., 2009). The World Health Organization guidelines
for drinking water set a standard for microcystin LR, a prevalent
cyanobacteria toxin, at or below 1 ppb. The Ohio Department of Health
issues Public Health Advisories when microcystin levels exceed 6 ppb
and No Contact Advisories are issued when microcystin levels exceed
20 ppb.

Up to 2006, Graham (2006) noted that most HAB research focused
onmarine ecosystemsand indentified four critical researchneeds: 1) re-
search on the occurrence of freshwater HABs, 2) reliable techniques for
algal identification and enumeration, 3) long-term studies of individual
lakes, reservoirs and rivers to identify the environmental factors driving
HAB formation, and 4) the development of methods for early detection
and predictive models to allow resource managers more time to
respond more effectively to potentially harmful conditions. Remote
sensing from satellites has the potential to address HAB research
needs 1, 3 and 4 (Shen, Xu, & Guo, 2012) via routine and consistent ob-
servations if the spatial resolution of the sensors is substantially less
than the size of the water bodies beingmonitored, the temporal resolu-
tion of the satellite or satellites ismeaningful given frequent cloud cover
in temperate regions during those parts of the yearwhenHABs are com-
mon and the images are available in a timely fashion and affordable to
decision makers and researchers (Blondeau-Patissier, Gower, Dekker,
Phinn, & Brando, 2014; Klemas, 2012; Stumpf & Tomlinson, 2005).

Remote sensing of algal blooms in ocean settings has been reviewed
recently by Klemas (2012) and Blondeau-Patissier et al. (2014). Ocean
settings are amenable to wide-field sensors such as MODIS, VIIRS and
especially the MERIS follow-on which have wide swath widths and
high temporal resolutions as noted in these recent reviews. In contrast,
satellite remote sensing of smaller inland water bodies less than a few
km across requires higher spatial resolution imagery (less than approx-
imately 300mGSD) implying narrow swathwidths and lower temporal
resolutions for individual satellites. Given the imaging and downlink
constraints of sub 300 m spatial resolution satellite imagers and fre-
quent cloud cover in temperate climates, satellite detection and moni-
toring of smaller inland reservoirs (common sources of drinking
water) require multiple satellites in order to image such water bodies
on a weekly or even bi-weekly basis. Constellations of several similar
satellites such as Sentinels 2A and 2B are ideal for this task. Given the
importance of monitoring drinking water supplies for potential HABs
and the cost of remote sensing satellites the identification of the most
portable algorithm or algorithms across multiple satellites capable of
imaging smaller inland water bodies would allow one to create
“meta-constellations” of existing and near-future satellites tomaximize
the temporal resolution of satellite monitoring of these water bodies.
This study compares the performance of satellite reflectance algorithms
for estimating chlorophyll-a in a temperate reservoir using synthetic
satellite imagery or multiple imaging satellites constructed from high
spatial and spectral resolution hyperspectral aircraft imagery and
dense coincident surface observations to extend the recent in-situ
surface spectroradiometer study of inland tropical reservoirs by
Augusto-Silva et al. (2014) to temperate inland reservoirs.

This study compares the performance of 12 algorithms for the esti-
mation of Chl-a applied to coincident synthetic imagery for five satellite
imagers usingwater quality measurements collected by the USACE, U.S.
Environmental Protection Agency (USEPA), USGS, Kentucky Division of
Water, and University of Cincinnati. Airborne hyperspectral imagery
was upscaled tomoderate resolution satellite data to develop specifica-
tions for a prototype multi-satellite monitoring system for HABs in our
case study lake, Harsha Lake, in Southwest Ohio. We addressed the
research needs expressed by the USACE, USEPA and USGS for HAB
monitoring and analysis in freshwater lakes and rivers with a multi-
resolution surface, airborne and satellite study usingwater qualitymea-
surements, high-resolution 1-meter airborne hyperspectral imagery
upscaled to 1.8-, 20-, 30-, 250- and 300-meter multispectral satellite
imagery.
Increasingly algal blooms, including some toxic or “harmful” algal
blooms (a.k.a HABs), are affecting inland reservoirs, many of which
are used as a source of drinking water (Graham, 2006). These HABs
have made the development of satellite reflectance algorithms for the
estimation of Chl-a and associated phytoplankton biomass a high re-
search priority (Fig. 1). Although Chl-a algorithms do not differentiate
between harmful and less harmful algal blooms, they are more easily
adapted to existing satellite imaging systems than phycocyanin algo-
rithms and may help water resource managers focus limited time and
money on risk mitigation of potential HABs accordingly. A similar anal-
ysis of phycocyanin algorithmswill be presented in a companion paper.

Chlorophyll-a (Chl-a) is a spectrally active compound in phyto-
plankton that is commonly used as a proxy for phytoplankton biomass
(Morel & Prieur, 1977; Vos, Donze, & Bueteveld, 1986; Gitelson,
Nikanorov, Sabo, & Szilagyi, 1986; Gitelson, Gritz, & Merzlyak, 2003;
Wynne, Stumpf, Tomlinson, & Dyble, 2012; Stumpf, Wynne, Baker, &
Fahnenstiel, 2012; Kudela et al., 2015) and is therefore a key indicator
of water quality (Verdin, 1985; Ekstrand, 1992; Reif, 2011; Mishra &
Mishra, 2012). Satellite reflectance algorithms for estimating Chl-a con-
centrations in tropical inland reservoirs were recently reviewed and
evaluated by Augusto-Silva et al. (2014). Augusto-Silva et al. (2014)
used surface point spectroradiometers to collect reflectance signatures
of Chl-a laden reservoir waters in Brazil and then synthesized Medium
Resolution Imaging Spectrometer (MERIS) as well as its similar
follow-on Ocean and Land Color Instrument (OLCI) imagery before
applying the established two-band-algorithm (2BDA), three-band-
algorithm (3BDA) and Normalized Difference Chlorophyll Index
(NDCI) reflectance algorithms for Chl-a estimation (Gitelson et al.,
2003; Dall'Olmo & Gitelson, 2005; Mishra & Mishra, 2012). They found
that the band spacings in these instruments were suitable for Chl-a
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estimation in combination with empirical calibration (Sauer, Roesler,
Werdell, & Barnard, 2012).

The overarching goal of this study is tomaximize temporal coverage
of inland reservoirs for algal bloom detection by leveraging existing and
near-future multispectral satellite imaging systems by identifying the
most “portable” Chl-a algorithms (Augusto-Silva et al., 2014; Hu,
Barnes, Qi, & Crcoran, 2015; Mishra & Mishra, 2012; Shen et al., 2012).
The option of using multiple satellites to image algal blooms in inland
waters is especially important in humid, temperate climates where in-
termittent cloud cover limits temporal resolution (Veryla, 1995). There-
fore, this research follows the lead of Augusto-Silva et al. (2014) in that
it is focused on comparing relatively simple, reflectance-signature-
based algorithms that provide reasonable estimates of Chl-a concentra-
tions and phytoplankton biomass with current and near-future multi-
spectral satellite imagers. The ultimate goal of this research is to
explore and expand remote sensing-based options that could be used
for near-real-time monitoring of inland water quality (Dekker and
Peters, 1993; Gitelson et al., 1993; Fraser, 1998; Glasgow, Burkholder,
Reed, Lewitus, & Kleinman, 2004; Binding, Greenberg, & Bukata,
2013). These simple reflectance-signature-based proxies will be used
to “red flag” potential problem areas for additional field-based investi-
gations (Augusto-Silva et al., 2014).

The acquisition of satellite imagery to estimate phytoplankton bio-
mass in inland reservoirs in the visible and near-infrared parts of
the electromagnetic spectrum is subject to cloud cover. In addition,
surface phytoplankton concentrations are influenced by wind (mixing
and drifting) as well as changes in the nutrient flux and water temper-
ature, among other variables. Phytoplankton communities, in general,
are dynamic on the scale of days and sometimes hours (Hunter, Tyler,
Willby, & Gilvear, 2008; Sawaya et al., 2003; Wang, Xia, Fu, & Sheng,
2004).

Moderate resolution satellites such as Landsat-8 can provide afford-
able sources of imagery for water quality monitoring in inland reser-
voirs (Mayo, Gitelson, Yacobi, & Ben-Avraham, 1995); however, their
fixed revisit times, fixed observation angles and small constellations
(usually a single satellite) limit their temporal resolution (e.g., 16 days
for Landsat-8). It is therefore desirable to use a variety of low-cost
sources of moderate spatial resolution satellite imagery from different
satellites to increase temporal resolution and maximize the chances of
successful image acquisition. Moderate resolution satellites such as
Landsat-8, MERIS/OLCI, theModerate Resolution Imaging Spectrometer
(MODIS), and theupcoming Sentinel-2A&B constellation have a variety
of both spatial resolutions and band configurations. Not all satellite
algorithms can be applied to all existing moderate resolution satellite
imagers accordingly.

This paper focuses on Chl-a because more of the existing satellite
imagers are suited to sensing the near-infrared Chl-a reflectance peak
than the narrow 620 nm peak associated phycocyanin which is indeed
a potentially more direct indicator of harmful algal blooms. The larger
number of satellite imagers capable of detecting the near-infrared Chl-
a peak increases temporal resolution in cloudy mid-latitude climates.
Therefore, we have focused our efforts on finding simple reflectance-
signature-based Chl-a algorithms that are relatively “portable” between
satellite imaging systems and have been evaluated with dense coinci-
dent surface observations. These moderate resolution satellite imaging
systemsmay be used as a low-cost “first-cut” to identify potential prob-
lem areas that may be verifiedwith coincident surface observations and
high resolution imagers such as WorldView-2 and -3.

The identification of Chl-a algorithms that are portable across satel-
lite imaging systems is also complicated by their differences in overpass
times (variable atmosphere and surface conditions), differences in
spatial and spectral resolutions and differences in radiometry. We
have attempted to address the first problem, differing overpass
times by generating coincident synthetic satellite imagery from
hyperspectral imagery (Thonfeld, Feilhauer, &Menz, 2012), in amanner
similar to that used by Augusto-Silva et al. (2014) with surface point
spectroradiometers with simple linear spectral binning and spatial
upscaling of aircraft hyperspectral imagery (Schlapfer, Boerner, &
Schaepman, 1999; Jarecke, Barry, Pearlman, & Markham, 2001; Borge
andMortensen, 2002). Simulating simultaneous imagery frommultiple
satellites from hyperspectral imagery removes temporal variation of
both the atmosphere and the water surface from the comparison of
the Chl-a algorithms and requires only one set of coincident surface
observations.

Statistically significant correlations between image derived indices
and coincident surface observations suggest that the NOAA CI, FLH,
NDCI, 2BDA and 3BDA Chl-a algorithms (Mishra & Mishra, 2012;
Wynne et al., 2012) will be portable between hyperspectral and
MERIS-like imagers and that the NDCI, 2BDA, and 3BDA Chl-a algo-
rithms (Mishra &Mishra, 2012) will be portable between hyperspectral
imagers, WorldView-2 and -3, and Sentinel-2, MERIS-like imagers and
to a lesser degree MODIS-like imagers and are worthy of further testing
with real post-launch imagery and time-series coincident surface obser-
vations in preparation for near-real-time algal bloom monitoring sys-
tems. A new fluorescence line height algorithm yields the best Chl-a
estimates with simulated Landsat-8 imagery as described below.
2. Methods

2.1. Study area

The Ohio River and its tributaries, often including reservoirs, are the
sources of drinking water for more than 5,000,000 people (Vicory,
2009) and the sites of recent algal blooms (including HABs). The quality
of water in the Ohio River is routinely monitored by the Ohio River
Valley Water Sanitation Commission (ORSANCO), USEPA, Ohio EPA,
and USGS. The water levels in the Ohio and the East Fork of the Little
Miami Rivers are monitored by the USACE and USGS. NOAA monitors
meteorological variables at nearby Lunken Airport in eastern Cincinnati.
Harsha Lake lies within the East Fork of the Little Miami River Water-
shed above its confluence with the Little Miami River which then
flows into the Ohio River. The East Fork Watershed and Harsha Lake is
the subject of a long-term, routine non-point water quality study con-
ducted by the USACE, USEPA and Ohio EPA as part of the East Fork Little
Miami River Watershed Cooperative (EFWCoop). In addition to being a
source of drinking water, Harsha Lake has two public swimming
beaches, hosts open water swimming and sculling events and is used
extensively for recreational fishing. These economies are suffering
from the algae problems. When combined with thewater quality infor-
mation resources, Harsha Lake becomes an excellent case study for sev-
eral research issues related to HABs (Fig. 2).
2.2. Data sets

Our research used the following key data sets: airborne visible and
near-infrared (VNIR) hyperspectral imagery of Harsha Lake and exten-
sive, coincident surface spectral observations, laboratorymeasurements
of water quality parameters and in situ water sensors. These data sets
were used to develop and calibrate a set of numerical algorithms for
mapping the quantitative estimation of Chl-a concentration.

We built upon the ongoing work of the multi-agency EFWCoop to
accurately quantify algal communities and coincident water physio-
chemistries in Harsha Lake by establishing a partnership with the
USACE Joint Airborne Lidar Bathymetry Technical Center of Expertise
(JALBTCX) that supported an airborne survey using an Itres. Inc. Com-
pact Airborne Spectrographic Imager (CASI)-1500 VNIR hyperspectral
imager (HSI) mounted on a light aircraft. Research boats operated by
the USACE, USEPA, Kentucky Division of Water and University of
Cincinnati collected water quality and cyanobacteria data below the
path of the aircraft within 1 h of image acquisition.



Fig. 2. Location map of Harsha (East Fork) Lake near Cincinnati, Ohio. The Ohio River and contributing inland water bodies such as Harsha Lake are primary sources of drinking water for
more than 5 million people
(source: U.S. Army Corps of Engineers).
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2.3. Field campaign

For this study, the JALBTCX was consulted to predict a date range in
June with suitable survey conditions to acquire the hyperspectral im-
ages. The airborne survey was scheduled to meet a 20–60° solar eleva-
tion angle (30–70° solar zenith angle) flight window to reduce sun
glint following USACE standard practice to allow for early morning
image acquisitions, maximize flying time and the number of coincident
field observations, and avoid cloud formation in humid summer weath-
er conditions. This practice compares well with suggested solar eleva-
tion angles of 30–60° (Dekker and Peters, 1993) and 35–50° (Mustard
et al., 2001) and allows us to avoid mid-day clouds with early morning
flights. The JALBTCX determined that there would be two daily minimal
sun glint windows for Harsha Lake from 15 through 29 June 2014 with
good to excellent (reasonably low) Global Positioning System (GPS)
Position Dilution of Precision (PDOP) values to enable precise aircraft
ephemeris tracking during intervals of low cloud cover. Additional con-
sultation with the National Weather Service (NWS) provided daily
weather updates to identify days and times within the suitable survey
windowwith cloud free or near cloud free conditions. This temporal fil-
tering process resulted in the acquisition of aircraft-based hyperspectral
imagery and coincident surface observations on the morning of 27 June
2014.
2.4. Airborne hyperspectral imagery acquisition and pre-processing

ACASI-1500VNIR airborne hyperspectral imaging systemwasflown
at an altitude of approximately 2000 m and acquired 48-band
hyperspectral image strips 1466-meters wide at 1-meter spatial and
14 nanometer Full Width Half Maximum (FWHM) spectral resolution
over a wavelength range of 371 to 1042 nm. JALBTCX personnel used
in-house scripts and Itres' processing executables to convert the raw
data, extract navigation data, accurately process the navigation, and
produce radiance image strips. Radiance image strips were then geo-
metrically corrected andmosaicked using precisely computed boresight
values and a high resolution digital elevation model (DEM). Overlap-
ping pixels were chosen based on the smallest off-nadir angle when
mosaicking. Following this process, the mosaicked image was then
used as input into Exelis ENVI Software's Fast Line of Sight Atmospheric
Analysis of Hypercubes (FLAASH) module. The Mid-Latitude Summer
(MLS) MODTRAN® model was chosen for correcting the column
water vapor andwater retrieval was set at 940 nm. The initial scene vis-
ibility was set at N40 km as the atmospheric conditions were clear with
little to no haze while the collection occurred. The final output resulted
in an atmospherically corrected, spectrally polished reflectance image.
TAFKAA/ATREM algorithms may be more typically used to atmospheri-
cally correct open ocean image scenes; however, the mosaicked
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reflectance image processed in this study primarily consisted of land
(more than 80% of the total pixels were land), thus we chose a correc-
tion algorithm that offered flexibility to handle contributions from
both land and water. Tests with extracted water pixel FLAASH reflec-
tance spectra after atmospheric correction are similar to water field
spectral measurements as shown in Fig. 5.

In order to accurately map and quantify algal blooms, we
created high-resolution maps of Chl-a concentration based on
airborne hyperspectral images with coincident surface observations.
Hyperspectral imaging data consist of many sensitive, narrow bands
spanning a wide spectral range which allows for simultaneous retrieval
of chlorophyll concentration, suspended sediment, and CDOM in the
coastal and lake waters (Koponen, Pulliainen, Kallio, & Hallikainen,
2002, Giardino, Brando, Dekker, Strombeck, & Candiani, 2007). This
paper focuses on Chlorophyll-a concentrations in smaller inland water
bodies because most satellite imagers do not have a narrow band near
620 nm. We will consider those satellite imagers that do have a narrow
band near 620 nm in a companion paper focused on phycocyanin algo-
rithm performance.
2.5. Coincident surface observation procedures

A review of the literature and discussionswith NOAA confirmed that
Chl-a is a reasonable proxy for algal blooms (Klemas, 2012). Detection
of Chl-a with multispectral and hyperspectral imagery has also been
well documented by the same researchers although they debate
which algorithms and sensors are most appropriate for any given
water body (Alawadi, 2010; Allee & Johnson, 1999; Brivio, Giardino, &
Zilioli, 2001; Cannizzaro & Carder, 2006; Choubey, 1994; Dekker &
Peters, 1993; Dall'Olmo, Gitelson, & Rundquist, 2003; Fraser, 1998;
Frohn & Autrey, 2009; Gitelson, 1992; Gower, King, & Goncalves,
2008; Han, Rundquist, Liu, Fraser, & Schalles, 1994; Kneubuhler et al.,
2007; Matthews, Duncan, & Davison, 2001; Quibell, 1992; Rundquist,
Han, Schalles, & Peake, 1996; Schalles, Schiebe, Starks, & Troeger,
1997; Stumpf et al., 2012; Thiemann & Kaufmann, 2002: Vos et al.,
1986; Wynne et al., 2012; Zhao, Xing, Liu, Yang, & Wang, 2010). There-
fore, this sampling program focused on collecting a large and dense set
of coincident surface observations to evaluate both real and synthetic
coincident (from aircraft hyperspectral) Landsat-8, MODIS, MERIS/
OLCI, WorldView-2/-3, and Sentinel-2 images and algorithms with re-
gard to the estimation of Chl-a concentrations and turbidity anomalies
in relatively small inland water bodies (less than a few kilometers
across). This study focused on a comparison of the performance of
Chl-a algorithms (Table 2), and so direct discrimination between algal
blooms and harmful algal blooms with imagery was not part of this
study. Phycocyanin algorithms are compared in a separate study.

In order to compare the performance of Chl-a algorithms with CASI
and several synthetic multispectral data sets we deployed four research
boats and acquired 44 coincident surface observations on a 400 meter
grid point spacing with YSI water quality sondes cross-calibrated by
the US EPA Experimental Stream Facility. Surface observation collection
was coordinated with the imaging aircraft via an air-to-ground radio.
Each boat collected the following GPS location and time (and depth)
referenced coincident surface observations:

1. Water samples from each sample point for laboratorymeasurements
by the USEPA

2. ASD spectra to evaluate atmospheric correction of CASI imagery.
3. In situ sensor measurements of Chl-a indicator, phycocyanin

indicator, turbidity, specific conductance, pH, water temperature,
and dissolved oxygen.

4. Secchi depth measurements at each sample point – meters below
surface.

5. GPS location- and date/time-referenced photos of surface water con-
ditions at each sample point. All data were referenced to theWGS84
map datum and converted to the Universal Transverse Mercator
(UTM) Zone 16 North map projection (Fig. 3).

Water samples grabbed at each of the coincident surface observation
sites were analyzed using standardmethods for several parameters.We
used the sum of the Phaeophytin corrected Chl-a and Phaeophytin a
(abbreviated according to standard US EPA practice as SUM ReCHL
(μg/L)) as the measure of Chl-a for our coincident surface observation
standard determined from the equations provided after extraction and
spectrophotometric detection according to standard method 10200H-
2.b: Spectrophotometric determination of chlorophyll in the presence
of phaeophytin a (APHA et al., 2012).

2.6. Synthetic satellite imagery

Hyperspectral bands were spectrally averaged with equal weight
using “Band Math” in ENVI to produce synthetic satellite image bands
for Landsat-8, Sentinel-2/MSI, Sentinel-3/MERIS/OLCI, MODIS, and
WorldView-2/3, according to published specifications (DigitalGlobe,
2009, 2014; ESA, 2012, 2013; USGS, 2015; Lindsey & Herring, 2001).
Given our focus on smaller inland water bodies we have not simulated
image data sets with bands with spatial resolutions coarser than 300 m.

We used simple linear spectral binning of the CASI data to approxi-
mate all of the imagers because did not know the post-launch spectral
response of Sentinel-2, WorldView-3 or of the MERIS/OLCI follow on
imagers at the time of this study. Linear resampling of hyperspectral
data introduces 1–3% RMS error or 6 to 8% relative error and other tech-
niquesmay double or halve this error (Schlapfer et al., 1999). Broge and
Mortensen (2002) studied greenness indices for terrestrial vegetation
and recommended that spectral resampling should represent “the re-
flectance as an average value calculated over the full width of each
new band” and that “Simple linear interpolation between spectral re-
flectances combined with band aggregation may be the most feasible
way of spectral resampling.” We have followed this method for the
comparison of aquatic greenness indices presented here.

We chose to approximate all of the simulated imagers with the
same simple band average calculations recommended by Broge and
Mortensen (2002). We could have applied the Landsat-8, MODIS and
predicted spectral MERIS/OLCI spectral response functions to the CASI
data, and this would have required resampling 14 nm FWHM CASI
imagery to approximately 1 nm FWHM using linear interpolation
(Augusto-Silva et al., 2014) before re-binning to the spectral response
functions of only some of the simulated imagers. Previous studies
have concluded that even with careful modelling of spectral response
functions, the radiometry of multispectral imagery simulated from
hyperspectral imagery and real multispectral imagery may differ by
up to twice pre-launch estimates (Jarecke et al., 2001) and associated
spectral resampling may halve or double radiometric errors on the
order of 6–8% associated with linear spectral resampling (Schlapfer
et al., 1999). Therefore our choice of simple linear spectral resampling
of the band configuration of the multispectral satellite imaging systems
from narrow band airborne hyperspectral data and the resulting simu-
lated radiometry are only approximations but are consistent between
the synthetic imagers. The differing spatial resolutions between the
different imagers are more problematic and introduce radiometric
errors on the order of 10–32% in similar imaging spectrometers
(Schlapfer, Schaepman, & Strobl, 2002) and result in complex trade-
offs between band pass, sampling interval and signal-to-noise ratios
that influence spectral detection capabilities (Swayze, Clark, Goetz,
Chrien, & Gorelick, 2003).

Nonetheless, all of our results from the simple linear approximation
method presented below are constructed from the same reflectance
data set (the same atmospheric conditions) and are normalized to the
same set of dense coincident surface observations. This method also
eliminates the co-registration errors that complicate the radiometric
comparison of real imagery acquired at different times (Thonfeld



Fig. 3.Natural Color Image of Harsha (East Fork) Lake acquiredwith a CASI-1500 imager on 27 June 2014with coincident surface observation locations used in this study.We acquired 44
coincident water quality sonde and water samples within 1 h of image acquisition to evaluate the performance of a variety of algorithms for estimating chlorophyll-a concentrations in a
temperate reservoir for a variety of satellite imaging systems.

20 R. Beck et al. / Remote Sensing of Environment 178 (2016) 15–30
et al., 2012). These synthetic bands were then resampled to the appro-
priate spatial resolution using “Resize Data” in ENVI. The resulting
synthetic band designations used in the subsequent analysis are
shown in Table 1.

2.7. Image analysis

We extended the coincident synthetic sensor methodology of
Augusto-Silva et al. (2014) to temperate inland reservoirs using aircraft
acquired hyperspectral imagery (Mittenzwey, Ulrich, Gitelson, &
Kondratiev, 1992; Kallio, 2000; Koponen et al., 2002) instead of surface
based spectroradiometer data. Our aircraft imagery was also converted
to reflectance and then artificially binned to create synthetic MERIS,
MODIS, WorldView-2/-3, Sentinel-2 and Landsat-8 imagery that
are “coincident” with a large coincident surface observation campaign
as suggested by Reif (2011). We then applied the same algorithm
set as Augusto-Silva et al. (2014) and extended it to include the
Cyanobacterial Index (CI), Maximum Chlorophyll Index (MCI), Fluores-
cence Line Height (FLH), and Surface Algal Bloom Index (SABI)
algorithms (Wynne et al., 2012; Binding et al., 2013; Zhao et al., 2010;
Alawadi, 2010, respectively) as well as some new hybrid indices (this
paper) to create a list of algorithm options by satellite imaging system
for water resource managers concerned with inland water quality
(Chipman, Olmanson, & Gitelson, 2009). A table of Chl-a algorithms
and their abbreviations as used in this study and listed by imaging
system is included in Table 1.

We used the Band Math function in ENVI 5.1 to apply the
Cyanobacterial Index (CI) (Wynne et al., 2012), Maximum Chlorophyll
Index (MCI) (Binding et al., 2013), Florescence Line Height (FLH)
(Zhao et al., 2010), Normalized Difference Chlorophyll Index (NDCI)
(Mishra & Mishra, 2012), 2BDA (Dall'Olmo & Gitelson, 2005), 3BDA
(Gitelson et al., 2003) and KIVU (Brivio et al., 2001) algorithms to the
original CASI reflectance data to establish a performance base-line be-
fore creating synthetic imagery that corresponds to the band spacing
of currently operational WorldView-2 and -3, Landsat-8, MODIS
and near-future Sentinel-2 and Sentinel-3 (MERIS-like OLCI) satellite
imaging systems (Table 2).

Not all algorithms could be applied to all synthetic images due to
band position, band spacing and band width constraints (Lathrop &
Lillesand, 1986; Cairns, Dickson, & Atkinson, 1997). We focused on rel-
atively simple reflectance-signature-based ratio and shape metric algo-
rithms (Zhao et al., 2010; Mishra & Mishra, 2012) for the sake of
simplicity, brevity and ease of application by water resource managers.
Given the challenges regarding the application of shape metrics to



Table 1
Band wavelength ranges, lefts and widths for original and synthetic satellite imagers.
FWHM is Full Width Half Maximum.

Imager Original
range (nm)

Center
(nm)

FWHM
(nm)

Synthetic
range (nm)

Synthetic
left (nm)

FWHM
(nm)

WorldView-2/3 Resampled to 1.8 m
b1 400–450 425 50 403–454 428.5 51
b2 450–510 480 60 454–505 479.5 51
b3 510–580 545 70 523–573 548 50
b4 585–625 605 40 582–633 607.5 51
b5 630–690 660 60 634–684 659 50
b6 705–745 725 40 710–749 729.5 39
b7 770–895 832.5 125 790–889 839.5 99
b8 860–1040 950 180 889–1043 966 154
Sentinel-2 Resampled to 20 m
b1 433–453
b2 458–523 490.5 65 457–515 486 58
b3 543–578 560.5 35 543–572 557.5 29
b4 650–680 665 30 643–686 664.5 43
b5 698–713 705.5 15 700–714 707 14
b6 733–748 740.5 15 728–743 735.5 15
b7 773–793 783 20 771–800 785.5 29
b8 785–900 842.5 115 785–900 842.5 115
b8b 855–875 865 20 856–871 863.5 15
b9 935–955 945 20 935–955 945 20
Landsat-8 Resampled to 30 m
b1 430–450 440 20 429–443 436 14
b2 450–510 480 60 457–500 478.5 43
b3 530–590 560 60 529–586 557.5 57
b4 640–670 655 30 643–672 657.5 29
b5 850–880 865 30 856–885 870.5 29
MERIS/OLCI Resampled to 300 m
b1 402–412 407 10 400–414 407 14
b2 438–448 443 10 429–457 443 28
b3 485–495 490 10 486–500 493 14
b4 505–515 510 10 500–515 507.5 15
b5 555–565 560 10 558–572 565 14
b6 615–625 620 10 615–629 622 14
b7 660–670 665 10 657–672 664.5 15
b8 678–685 681.5 7 672–686 679 14
b9 704–714 709 10 700–714 707 14
b10 750–757 753.5 7 743–757 750 14
b11 757–762 759.5 5 750–764 757 14
b12 772–787 779.5 15 757–800 778.5 43
b13 855–875 865 20 842–885 863.5 43
b14 880–890 885 10 871–899 885 28
b15 895–905 900 10 885–913 899 28
MODIS Resampled to 250 m
b1 620–670 645 50 615–672 643.5 57
b2 841–876 858.5 35 842–871 856.5 29
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Landsat-8 imagery, we also evaluated the 3BDA-like (“KIVU”) (Brivio
et al., 2001; Kneubuhler, Frank, Kellenberger, Pasche, & Schmid, 2007)
and surface algal bloom index (SABI) (Alawadi, 2010). We eventually
combined elements of many of the above algorithms (LaPotin,
Kennedy, Pangburn, & Bolus, 2001) into two new algorithms specifically
for Landsat-8. These new algorithms are FLH Blue and FLH Violet. We
evaluated their performance as well so that water resource managers
may compare them against existing algorithms for the estimation of
Chl-a with satellite imagery (Table 3).

We followed the example of Kudela et al. (2015) and used a standard
Type-1 regression test (Pinero, Perelman, Guerschman, & Paruleo,
2008) with twenty-nine points from water only pixels to compare the
CASI and synthetic WorldView-2, Sentinel-2 and Landsat-8 imagery
predictions on the X-axes to laboratory observations (measurements)
of Chl-a (Sum_ReChl (Ug/L) on the Y-axes to avoidmixed pixels that in-
cluded the shoreline after rigorous quality control of coincident surface
observations. Nine points were used to evaluate synthetic MODIS and
MERIS imagery for the same reason. Measured Chl-a values were then
compared to extracted image Chl-a index point values at each location
and their statistical relationship evaluated with Pearson's r (Table 3).
We then used a standard Type 1 regression test for the Chl-a indices
against measured Chl-a values to normalize all results to the same
units to facilitate comparison of the performance of each algorithm fol-
lowing the method of Kudela et al. (2015) (Table 4). We used a critical
p-value of 0.001 for all Pearson's r Type 1 regression tests in Tables 3
and 4 and Figs. 4, 6, 7, 8, 9 and 10.

Some researchers prefer Type 2 regressions (Peltzer, 2015)
to test correlations of observed vs. measured values in natural
systems. Therefore we also applied the Type 2 geometric mean method
of Peltzer (2015) to Chl-a estimation at Harsha (East Fork) Lake with
all results again normalized to calculated Chl-a values for top
performing algorithms by Type 1 regression tests (Kudela et al., 2015)
(Table 5).

2.8. Combined error budget

There are many potential sources of error in this study: the band
math approach to simulating the upscaled imagery, the chlorophyll
algorithms used, error in the surface observation data set, error from
atmospheric correction and error from other image processing steps.
As noted in our synthetic image discussion, previous studies estimate
up to 8% relative error with our linear spectral binning technique and
other techniques may double or halve this error (4–16%) (Schlapfer
et al., 1999). Moreover, the radiometry of multispectral imagery simu-
lated from hyperspectral imagery and real multispectral imagery may
differ by up to twice (200%) pre-launch estimates (Jarecke et al.,
2001). The differing spatial resolutions between the different imagers
are more problematic and introduce radiometric errors on the order of
10–32% in similar imaging spectrometers (Schlapfer et al., 2002). Errors
associated with the choice of atmospheric correction average 5–42%
across most wavelengths for Visible through SWIR hyperspectral
imagers (Kruse, 2004; Richter, 2008). Our total radiometric errors
could be 282% or more accordingly and dwarfs errors associated with
our choice of methods to synthesize satellite imagery from CASI
hyperspectral data. Visual comparison of CASI reflectance and coinci-
dent surface spectra (Fig. 5) shows good agreement between 450 and
900 nm and poorer agreement above and below this wavelength
range. Nonetheless, we see good agreement between the spatial
patterns of image derived Chl-a estimates using several algorithms
and laboratory measurements of Chl-a from coincident water samples
as discussed below.

The purpose of this study is to synthetically create a “simultaneous”
overpass of multiple (synthetic) imagers, apply feasible Chl-a algo-
rithms to compare the performance of each algorithm/synthetic imager
combination against the same set of dense, expensive and time consum-
ing coincident surface (water) observations to suggest which algo-
rithms are most likely to be the most portable between satellites.
Given the numerous and poorly constrained sources of error associated
with this study, calculated Chl-a values (Figs. 4c, 6c, 7c, 8c, 9c, and 10c)
are included here only to facilitate a comparison of the relative perfor-
mance of algorithm/synthetic imager combinations rather than to
predict exact Chl-a concentrations with real-world imagers. Some of
these synthetic imagers have not even been launched. Pre-launch and
on-orbit radiometry often differ significantly as discussed above. There-
fore real-world Chl-a concentration calibration for a full suite of imagers
for smaller inland water bodies will require coincident surface (water)
observations for each real world imagers although a comparison of
their performance will be complicated by differences in their overpass
times and dynamic environmental conditions.

3. Results and discussion

Single-band output from the Band Math function in ENVI for
each Chl-a algorithm (Band Math Field in Table 2) was point sampled
using the coincident surface observation locations to extract Chl-a
index (image) values for comparison with measured Chl-values



Table 2
Band math and wavelengths in nm for each algorithm used for chlorophyll-a estimation at Harsha Lake. Float refers to floating point values.

Chl-a index algorithms by satellite/sensor Spatial res. (m) Band math/wavelengths (nm)

CASI CI 1 neg1*(((float(b23))-(float(b22))-((float(b25))-(float(b22)))))
CASI CI 1 neg1*(((float(686))-(float(672))-((float(714))-(float(672)))))
CASI MCI 1 (((float(b23))-(float(b22))-((float(b25))-(float(b22)))))
CASI MCI 1 (((float(686))-(float(672))-((float(714))-(float(672)))))
CASI FLH 1 (float(b25))-[float(b27) + (float(b23)-float(b27))]
CASI FLH 1 (float(714))-[float(743) + (float(686)-float(743))]
CASI NDCI 1 (float(b25)-float(b23))/(float(b25) + float(b23))
CASI NDCI 1 (float(714)-float(686))/(float(714) + float(686))
CASI 2BDA 1 (float(b25))/(float(b22))
CASI 2BDA 1 (float(714))/(float(672))
CASI 3BDA 1 ((1/float(b22))-(1/float(b25)))*(float(b28))
CASI 3BDA 1 ((1/float(672))-(1/float(714)))*(float(757))
WorldView-2 and -3 NDCI 1.8 (float(b6)-float(b5))/(float(b6) + float(b5))
WorldView-2 and -3 NDCI 1.8 (float(725)-float(660))/(float(725) + float(660))
WorldView-2 and -3 FLH violet 1.8 ((float(b3))-[float(b5) + (float(b1)-float(b5))])
WorldView-2 and -3 FLH violet 1.8 ((float(545))-[float(660) + (float(425)-float(660))])
WorldView-2 2BDA 1.8 (float(b6))/(float(b5))
WorldView-2 2BDA 1.8 (float(725))/(float(660))
WorldView-2 3BDA 1.8 ((1/float(b5))-(1/float(b6)))*(float(b7))
WorldView-2 3BDA 1.8 ((1/float(660))-(1/float(725)))*(float(833))
Sentinel-2 NDCI 20 (float(b5)-float(b4))/(float(b5) + float(b4))
Sentinel-2 NDCI 20 (float(705)-float(665))/(float(705) + float(665))
Sentinel-2 FLH violet 20 ((float(b3))-[float(b4) + (float(b2)-float(b4))])
Sentinel-2 FLH violet 20 ((float(560))-[float(665) + (float(490)-float(665))])
Sentinel-2 2BDA 20 (float(b5))/(float(b4))
Sentinel-2 2BDA 20 (float(705))/(float(665))
Sentinel-2 3BDA 20 ((1/float(b4))-(1/float(b5)))*(float(b8b))
Sentinel-2 3BDA 20 ((1/float(665))-(1/float(705)))*(float(865))
Landsat-8 NIR band is far from Chl-a peak
Landsat-8 NDCI 30 (float(b5)-float(b4))/(float(b5) + float(b4))
Landsat-8 NDCI 30 (float(660)-float(605))/(float(660) + float(605))
Landsat-8 SABI 30 (float(b5)-float(b4))/(float(b2) + float(b3))
Landsat-8 SABI 30 (float(660)-float(605))/(float(480) + float(545))
Landsat-8 FLH blue 30 (float(b3))-[float(b4) + (float(b2)-float(b4))]
Landsat-8 FLH blue 30 (float(545))-[float(605) + (float(480)-float(605))]
Landsat-8 FLH violet 30 (float(b3))-[float(b4) + (float(b1)-float(b4))]
Landsat-8 FLH violet 30 (float(545))-[float(605) + (float(425)-float(605))]
Landsat-8 2BDA 30 (float(b5))/(float(b4))
Landsat-8 2BDA 30 (float(660))/(float(605))
Landsat-8 KIVU (3BDA-like) 30 (float(b2)-float(b4))/(float(b3))
Landsat-8 KIVU (3BDA-like) 30 (float(480)-float(605))/(float(545))
MODIS NDCI 250 (float(b2)-float(b1))/(float(b2) + float(b1))
MODIS NDCI 250 (float(857)-float(646))/(float(857) + float(646))
MODIS 2BDA 250 (float(b2))/(float(b1))
MODIS 2BDA 250 (float(857))/(float(646))
MERIS CI 300 neg1*(((float(b8))-(float(b7))-((float(b9))-(float(b7)))))
MERIS CI 300 neg1*(((float(681))-(float(665))-((float(709))-(float(665)))))
MERIS MCI 300 (((float(b9))-(float(b8))-((float(b10))-(float(b8)))))
MERIS MCI 300 (((float(709))-(float(681))-((float(753))-(float(681)))))
MERIS FLH 300 (float(b9))-[float(b10) + (float(b8)-float(b10))]
MERIS FLH 300 (float(709))-[float(753) + (float(681)-float(753))]
MERIS NDCI 300 (float(b9)-float(b7))/(float(b9) + float(b7))
MERIS NDCI 300 (float(709)-float(665))/(float(709) + float(665))
MERIS 2BDA 300 (float(b9))/(float(b7))
MERIS 2BDA 300 (float(709))/(float(665))
MERIS 3BDA 300 ((1/float(b7))-(1/float(b9)))*(float(b11))
MERIS 3BDA 300 ((1/float(665))-(1/float(709)))*(float(761))
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(Sum_ReChl_Ug_L) from water samples. All 44 sampling points were
used to evaluate the performance of each algorithm applied to the
CASI reflectance imagery. All of the synthetic imagery used for the fol-
lowing performance analysis with regard to the estimation of Chl-a
are derived from VNIR CASI data atmospherically corrected to reflec-
tance. Therefore, the following results are for atmospherically corrected
imagery for all of the synthetic sensors considered below. We applied a
standard Type 1 regression test (Pearson's r) for the Chl-a indices
against measured Chl-a values to normalize all results to the same
units to facilitate comparison of the performance of each algorithm
(Fig. 4 and Table 4) following Pinero et al. (2008) and Kudela et al.
(2015) as described in the Methods section above. We used 0.001 as
our critical p value.
3.1. CASI imagery

Weapplied the CI,MCI, FLH, NDCI, 2BDA and 3BDA algorithms to the
1-meter, 48-band CASI VNIR hyperspectral reflectance image mosaic.
All six algorithms applied to the imagery performed well due to the nu-
merous narrow bands which are well suited to the CI, MCI, and FLH
shape metric algorithms for the Chl-a peak between 700 and 714 nm
(Gitelson, 1992; Zhao et al., 2010) and well placed for determining the
slope of the (aquatic) “red” or “veg” (vegetation) edge (Shafique,
Autrey, Fulk, & Cormier, 2001) (Table 1 and Figs. 4 and 5). The relatively
longwavelength peak at 714 nmand highChl-a concentration observed
here is consistent with previous observations of a “red shift” at higher
Chl-a concentrations (Vos et al., 1986; Gitelson, 1992). The CI, MCI,



Table 3
Performance of algorithms for chlorophyll-a estimation at Harsha Lake using Chl-a indices according to Pearson's r test (Type 1) linear regressions. Float refers to floating point values.

Chl-a index algorithms
by satellite/sensor

No. of Water
truth sites

Pearson's r Pearson's r2 p value Slope Intercept

Sum_Rechl_Ug_L

CASI CI 29 0.817 0.667 b0.001 0.152 36.648
CASI MCI 29 0.767 0.588 b0.001 0.188 18.324
CASI FLH 29 0.817 0.667 b0.001 0.152 36.648
CASI NDCI 29 0.829 0.687 b0.001 140.639 34.736
CASI 2BDA 29 0.847 0.717 b0.001 56.316 −19.899
CASI 3BDA 29 0.854 0.729 b0.001 98.773 36.311
WorldView-2 and -3 NDCI 29 0.851 0.724 b0.001 142.507 56.04
WorldView-2 and -3 FLH violet 29 0.728 0.530 b0.001 0.307 −52.569
WorldView-2 2BDA 29 0.843 0.711 b0.001 74.358 −19.085
WorldView-2 3BDA 29 0.861 0.741 b0.001 107.069 55.455
Sentinel-2 NDCI 29 0.891 0.794 b0.001 0.388 −18.844
Sentinel-2 FLH violet 29 0.598 0.358 b0.001 −0.033 53.064
Sentinel-2 2BDA 29 0.894 0.799 b0.001 86.148 −51.940
Sentinel-2 3BDA 29 0.832 0.692 b0.001 156.286 35.982
Landsat-8 NDCI 29 0.354 0.125 0.059 39.488 61.355
Landsat-8 SABI 29 0.351 0.123 0.062 67.034 64.569
Landsat-8 FLH blue 29 0.617 0.381 b0.001 0.360 −18.082
Landsat-8 FLH violet 29 0.740 0.548 b0.001 0.316 −46.053
Landsat-8 2BDA 29 0.395 0.156 0.034 27.122 29.244
Landsat-8 KIVU (3BDA-like) 29 −0.313 0.098 0.098 −217.99 5.078
Landsat-8 3BDA 29 0.398 0.158 0.033 27.122 29.244
MODIS NDCI 9 0.549 0.301 0.126 26.265 32.272
MODIS 2BDA 9 0.506 0.256 0.164 3.349 33.522
MERIS CI 9 0.917 0.841 b0.001 0.164 33.690
MERIS MCI 9 0.397 0.158 0.296 0.113 27.729
MERIS FLH 9 0.917 0.841 b0.001 0.164 33.690
MERIS NDCI 9 0.919 0.845 b0.001 155.920 37.724
MERIS 2BDA 9 0.918 0.843 b0.001 66.644 −28.538
MERIS 3BDA 9 0.912 0.832 b0.001 105.979 38.537
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FLH, NDCI, 2BDA and 3BDA algorithms all performedwell with this sen-
sor in this experiment (Tables 2 and 3) with the 3BDA algorithm rank-
ing slightly higher than the others. This algorithm does an excellent
job of suppressing illumination between flight lines. The performance
Table 4
Performance of algorithms for chlorophyll-a estimation at Harsha (East Fork) Lake with all re
regressions.

Algorithms by satellite/sensor Spatial
res. (m)

Number of locations p value Sum_Rechl_Ug_

Slope

CASI CI 1 29 b0.001 1.003
CASI MCI 1 29 b0.001 1.001
CASI FLH 1 29 b0.001 1.003
CASI NDCI 1 29 b0.001 1.000
CASI 2BDA 1 29 b0.001 1.000
CASI 3BDA 1 29 b0.001 1.000
WorldView-2 and -3 NDCI 1.8 29 b0.001 1.000
WorldView-2 and -3FLH violet 1.8 29 b0.001 0.999
WorldView-2 2BDA 1.8 29 b0.001 1.000
WorldView-2 3BDA 1.8 29 b0.001 1.000
Sentinel-2 NDCI 20 29 b0.001 1.000
Sentinel-2 FLH violet 20 29 b0.001 0.999
Sentinel-2 2BDA 20 29 b0.001 1.000
Sentinel-2 3BDA 20 29 b0.001 1.000
Landsat-8 NDCI 30 29 0.059 1.000
Landsat-8 SABI 30 29 0.062 1.000
Landsat-8 FLH blue 30 29 b0.001 1.000
Landsat-8 FLH violet 30 29 b0.001 1.000
Landsat-8 2BDA 30 29 0.034 1.000
Landsat-8 KIVU (3BDA-like) 30 29 0.098 1.000
MODIS NDCI 250 9 0.126 1.000
MODIS 2BDA at 250 m res 250 9 0.164 1.000
MERIS CI 300 9 b0.001 1.003
MERIS MCI 300 9 0.290 1.003
MERIS FLH 300 9 b0.001 1.000
MERIS NDCI 300 9 b0.001 1.000
MERIS 2BDA 300 9 b0.001 1.000
MERIS 3BDA 300 9 b0.001 1.000
of each algorithm in Table 2 applied to the CASI imagery was evaluated
using 29 coincident surface observations. These points were chosen to
avoid pixels that mixed land, shadow and water at 1-meter spatial
resolution.
sults normalized to calculated Chl-a values according to Pearson's r test (Type 1) linear

L vs. Chl-a value Sum_Rechl_Ug_L vs. Chl-a value Sum_Rechl_Ug_L vs. Chl-a value

Intercept Pearson's r2

−0.098 0.667
−0.026 0.588
−0.098 0.667

0.000 0.687
0.000 0.717
0.000 0.729
0.000 0.724

−0.078 0.530
0.000 0.711
0.000 0.741
0.001 0.794

−0.021 0.358
0.000 0.799

−0.001 0.692
0.000 0.125
0.000 0.123
0.001 0.381

−0.008 0.548
0.000 0.156
0.000 0.098
0.000 0.301

−0.001 0.256
−0.097 0.841
−0.089 0.158
−0.097 0.841

0.000 0.845
0.000 0.843
0.000 0.832



Fig. 4. Results of 3BDA algorithm (Mishra & Mishra, 2012) as raw index values as applied
to original CASI imagery (shoreline in red) with brighter pixels in the reservoir indicating
higher Chl-a concentrations (4a) and its evaluation via observed (Y axis =
Sum_ReChl_Ug_L) vs. calculated raw 3BDA index value (Casi3Bda) with Pearson's r2

(r2 = 0.729, p b 0.001, N = 29 to avoid shorelines) (4b) and its evaluation via observed
(Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a concentration (Casi3Bdachla) with
Pearson's r2 (r2 = 0.729, p b 0.001, N = 29 to avoid shorelines) (4c). Details of the
synthetic bands and band math are available in Tables 1 and 2 respectively.
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3.2. WorldView-2 (synthetic)

We applied the NDCI, 2BDA, and 3BDA algorithms to synthetic
1.8-meter, WorldView-2 imagery to examine the degree of portability
of some of the simpler algorithms between (synthetic) satellite imaging
systems (Tables 1, 2, 3 and 4 and Fig. 6).We also applied amodified FLH
algorithm (focused on the green peak) that we developed for Landsat-8
(below) to WorldView-2 imagery for the same reason. All four algo-
rithms performed well. The 3BDA algorithm had the best performance
with regard to the estimation of Chl-a concentrations for this sensor in
this experiment (Fig. 6). A new FLH Violet algorithm that we developed
for Landat-8 (discussed below) also has good performance. The perfor-
mance of each algorithm in Tables 2 and 3 applied to the synthetic
WorldView-2 imagerywas evaluated using 29 coincident surface obser-
vations. The simple ratio-based algorithms that include the reflectance
in the near-infrared suppress illumination variation well and had the
best performance with regard to Chl-a estimation.

3.3. Sentinel-2 (synthetic)

We also applied the NDCI, 2BDA, and 3BDA algorithms we used for
WorldView-2 to the 20-meter, synthetic Sentinel-2 imagery. All three
algorithms had acceptable performance with this sensor in this experi-
ment and appear to have good portability between CASI, WorldView-
2/-3 and Sentinel-2 imagery (Tables 3 and 4 and Fig. 7). The excellent
performance of these three algorithms with synthetic Sentinel-2
imagery and their wide swaths and dual constellation suggests that
Sentinel-2 satellites will play a key role in future monitoring systems
for inlandwater quality. The 2BDA had very slightly better performance
in this experiment and suppresses illumination variations between
flight lines well. The performance of each algorithm in Tables 2 and 3
applied to the synthetic Sentinel-2 imagery was evaluated using 29
coincident surface observations coincident surface observations chosen
to avoid pixels that mixed land andwater at 20 and 30m spatial resolu-
tions. We also applied a modified FLH algorithm (focused on the green
peak) that we developed for Landsat-8 (below) to our synthetic
WorldView-2 imagery. Its performance with regard to Chl-a estimation
was good but was surpassed by the other three ratio algorithms that
suppress illumination variations and include the reflectance at the
Chl-a near-infrared peak.

3.4. Landsat-8 (synthetic)

Thewidths and positions of Landsat-8 bandsmade the application of
near-infrared Chl-a peak shapemetrics infeasible and the application of
some of the simple band ratio algorithms challenging (Tables 2 and 3,
Fig. 8). We formulated two new FLH based algorithms focused on the
visible green peak accordingly. Both measure the height of the green
peak relative to the red and blue or violet minima. We refer to these
algorithms as FLH Blue and FLH Violet respectively. The best performing
algorithm was the green peak FLH Violet algorithm that incorporated
the new ultra blue (“violet”) coastal band for this sensor in this
experiment.

The FLH algorithm does not suppress illumination variations be-
tween flight lines or scenes as well as the simpler ratio-based algo-
rithms but still has relatively good performance. Algorithms for the
estimation of Chl-a with synthetic Landsat-8 imagery were evaluated
with the same 29 water truth sampling points as the Sentinel-2 data.
Good performance of the FLH Violet Chl-a algorithm suggests that
Landsat-8 may be a part of near-term operational monitoring systems
for Chl-a in inland waters as a proxy for algal blooms. Future satellite
imaging systems for HABs will require more numerous and more
optimally placed narrow bands similar to those of WorldView-2/-3,
Sentinel-2 and MERIS/OLCI.

3.5. MODIS (synthetic)

We applied the NDCI and 2BDA algorithms to synthetic MODIS
bands 1 and 2 (Lindsey & Herring, 2001) with limited success
(Tables 1, 2 and 3, Fig. 9). While MODIS could be a part of operational
monitoring systems, its wide bands and coarse spatial resolution sug-
gest that it will have limited value in operational monitoring systems



Table 5
Performance of algorithms for chlorophyll-a estimation at Harsha (East Fork) Lake with all results normalized to calculated Chl-a values with additional Type 2 Geometric Mean Tests
(Peltzer, 2015) for top performing algorithms by Type 1 Regression tests (Kudela et al., 2015). The Type 2 regressions show a similar ordering of correlationwith somewhat poorer results
for Landsat-8 relative to Type 1 regressions on normalized calculated Chl-a values in Table 4.

Algorithms by
Satellite/Sensor

Spatial res. (m) N Geometric mean
slope

Geometric mean
intercept

Geometric mean correlation
coefficient squared

Standard deviation
of slope

Standard deviation of
Y-intercept

CASI 3BDA 1 29 1.171 −8.566 0.729 0.122 6.240
WorldView-2 and -3 3BDA 1.8 29 1.161 −8.067 0.741 0.118 6.032
Sentinel-2 2BDA 20 29 1.119 −5.956 0.799 0.099 5.097
Landsat-8 FLH violet 30 29 1.352 −17.638 0.546 0.188 9.567
MODIS NDCI 250 9 1.821 −38.205 0.301 0.654 30.584
MERIS NDCI 300 9 1.089 −4.118 0.845 0.165 7.834
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for inland water quality, especially for smaller water bodies less than a
few kilometers across. The performance of each algorithm in Tables 2
and 3 applied to the synthetic MODIS imagery was evaluated using
nine coincident surface observations. These nine points were chosen
to avoid pixels that mixed land and water at 250 and 300m spatial res-
olutions. MODIS bands 1 and 2 were simulated with the CASI data at
250 m spatial resolution to facilitate comparison of algorithm perfor-
mance. MODIS bands 1 and 2 are commonly available at the 250m spa-
tial resolution and are part of the better performing algorithm (NDCI).
This suggests that MODIS NDCI may have some utility with regard to
algal bloom monitoring in some larger inland water bodies. The large
Fig. 5. Spectral profile from atmospherically corrected CASI data of water in NE Harsha
Lake on the morning of 27 June 2014 (39°, 01′, 16″ N; 84°, 05′, 35″ W) showing a strong
Chl-a reflectance peak in the near infrared at 714 nm (5a) and as measured at the water
surface with a spectroradiometer in the field within 1 h of the overflight (5b). Y-axis is
reflectance relative to calibration standards in both 5a and 5b scaled to 1000 and 1
respectively. Wavelength units are nanometers.
pixel sizes associated with MODIS limit its use to relatively large water
bodies and require severe masking to avoid mixed pixels.

3.6. MERIS (synthetic)

We applied the CI, MCI, FLH, NDCI, 2BDA and 3BDA algorithms
to synthetic MERIS/OLCI data for Harsha Lake with limited success
(Tables 2 and 3, Fig. 10) before severe masking. After severe masking
all but one of the above algorithms performed well. NDCI was only
slightly better than the CI, FLH, 2BDA and 3BDA algorithms in this exper-
iment. We agree that MERIS/OLCI can be a part of operational water
quality monitoring systems (Wynne et al., 2012). However, high-
spatial resolution CASI data shows that there was significant spatial
heterogeneity in the concentration of Chl-a on a scale much finer than
either MERIS (300 m) or MODIS (250 m) pixels (Fig. 4). The greatest
contribution of past MERIS studies for monitoring water quality in
smaller inland water bodies less than a few kilometers across was the
development of the Chl-a near infrared peak shape metrics (Wynne
et al., 2012; Binding et al., 2013; Zhao et al., 2010), all of which per-
formed well with real CASI and synthetic WorldView-2/-3 imagery
but are notwell suited to broadbandmultispectral imagerywithout sig-
nificant modification and/or severe masking (Tables 2 and 3). This re-
sulted in a limited number of pixels that emphasize the Chl-a contrast
between the eastern (high concentrations) and western parts (low
concentrations) of Harsha Lake during this study. Despite themany po-
tential sources of error discussed above, our Chl-a concentration estima-
tions are similar to (approximately twice) that of other studies focused
on MERIS-like imagers (Mishra & Mishra, 2012). The NDCI Chl-a algo-
rithm as applied to our synthetic MERIS data result in NDCI indices of
0 to 1.0 corresponding to Chl-a concentrations of approximately 37 to
55 μg/m3. Mishra and Mishra (2012) found Chl-a concentrations of
16–25 μg/m3 for the same NDCI index range. The difference may be
due to environmental differences, different atmospheric correction
techniques, our synthetic imager approximation technique or due to
differences in the variety of laboratory and field techniques used to
measure Chl-a. We have included very specific information regarding
both our synthetic imaging technique as well as our laboratory
and field Chl-a measurement techniques to aid future comparisons
accordingly.

The Type 2 geometric mean regressions (Peltzer, 2015) show an or-
dering of correlation similar to those of Type 1 regressions (Pinero et al.,
2008; Kudela et al., 2015) with somewhat poorer results for Landsat-8
(Table 5).

4. Conclusions

This study used atmospherically corrected high-spatial and high-
spectral resolution VNIR CASI hyperspectral imagery to construct syn-
thetic WorldView-2, Sentinel-2, Landsat-8, MODIS and Sentinel-3
(MERIS/OLCI) image data sets with dense coincident surface observa-
tions in the form of in situ water quality sonde and laboratory measure-
ments to evaluate the performance of reflectance algorithms for
estimating chlorophyll-a concentrations in a temperate reservoir in



Fig. 6. Results of 3BDA algorithm (Mishra & Mishra, 2012) as raw index values as applied
to synthetic WorldView imagery (shoreline in red) with brighter pixels in the reservoir
indicating higher Chl-a concentrations (6a) and its evaluation via observed (Y axis =
Sum_ReChl_Ug_L) vs. calculated raw 3BDA index value (Wv23_3Bda) with Pearson's r2

(r2 = 0.741, p b 0.001, N = 29 to avoid shorelines) (6b) and its evaluation via observed
(Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a concentration (Wv23_3BDAchla) with
Pearson's r2 (r2 = 0.741, p b 0.001, N = 29 to avoid shorelines) (6c). Details of the
synthetic bands and band math are available in Tables 1 and 2 respectively.

Fig. 7. Results of 2BDA algorithm (Mishra & Mishra, 2012) converted to Chl-a values as
applied to synthetic Sentinel-2 imagery (shoreline in red) with brighter pixels in the
reservoir indicating higher Chl-a concentrations (7a) and its evaluation via observed (Y
axis = Sum_ReChl_Ug_L) vs. calculated raw 2BDA index value (S2_2Bda) with Pearson's
r2 (r2 = 0.799, p b 0.001, N = 29 to avoid shorelines) (7b) and its evaluation via
observed (Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a concentration (S2_2Bdachla)
with Pearson's r2 (r2 = 0.799, p value b0.001, N = 29 to avoid shorelines) (7c). The
CASI data allowed the synthesis of Sentinel-2 bands 2 through 9 only. Details of the
synthetic bands and band math are available in Tables 1 and 2 respectively.
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the manner of Augusto-Silva et al. (2014) as a proxy for algal blooms.
The study focused on currently operational and near-future imaging
satellite constellations that may be suitable contributors to an opera-
tional water quality monitoring system for inland reservoirs, lakes and
rivers.
We found that several established algorithms for the estimation of
Chl-a concentrations performed well for most of the synthetic satellite
data sets considered here. The NDCI, 2BDA and 3BDA algorithms had
the highest portability between the CASI, WorldView-2 and Sentinel-2
and MERIS-like imaging systems. Simple ratio-based algorithms



Fig. 8. Results of new FLH Violet algorithm (Mishra &Mishra, 2012) as raw index values as
applied to synthetic Landsat 8 imagery (shoreline in red) with brighter pixels in the
reservoir indicating higher Chl-a concentrations (8a) and its evaluation via observed (Y
axis = Sum_ReChl_Ug_L) vs. calculated raw 2BDA index value (L8_Flhviolet) with
Pearson's r2 (r2 = 0.548, p b 0.001, N = 29 to avoid shorelines) (8b) and its evaluation
via observed (Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a concentration
(L8_Flhvioletchla) with Pearson's r2 (r2 = 0.548, p b 0.001, N = 29 to avoid shorelines)
(8c). Details of the synthetic bands and band math are available in Tables 1 and 2
respectively.

Fig. 9. Results of NDCI algorithm (Mishra & Mishra, 2012) converted to Chl-a values as
applied to synthetic MODIS imagery (shoreline in red) with brighter pixels in the
reservoir indicating higher Chl-a concentrations (9a) and its evaluation as raw index
values as applied to synthetic MODIS imagery and its evaluation via observed (Y axis =
Sum_ReChl_Ug_L) vs. calculated raw NDCI index value (Modis_Ndci) with Pearson's r2

(r2 = 0.301, p = 0.126, N = 9 due to large pixels) (9b) and its evaluation via observed
(Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a concentration (Modis_Ndcichla)
with Pearson's r2 (r2 = 0.301, p = 0.126, N = 9 due to large pixels) (9c). Details of
the synthetic bands and band math are available in Tables 1 and 2 respectively.
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suppress illumination variation between scenes and, when applied to
imagers with relatively narrow bands that capture the Chl-a reflectance
red minimum and near-infrared peak, estimate Chl-a concentrations
well after imager and environment specific calibration. Landsat-8 re-
quires an alternative algorithm such as our new FLH Violet algorithm.
MERIS and MODIS do not capture the spatial heterogeneity in Chl-a
observed in this study due to their large pixels. MODIS has wide bands
that do not target the “veg edge” or Chl-a reflectance peak well and
has lower performance accordingly (Tables 2 and 3) although it may
be useful with NDCI for larger water bodies.

For imagers with appropriate band widths and positions relative to
the Chl-a reflectance signature and pixel sizes appropriate for the size



Fig. 10. Results of NDCI algorithm (Mishra & Mishra, 2012) as raw Chl-a index values as
applied to synthetic MERIS imagery (shoreline in red) with brighter pixels in the
reservoir indicating higher Chl-a concentrations (10a) and its evaluation via observed (Y
axis = Sum_ReChl_Ug_L) vs. raw Chl-a index values (MerisNdci) concentration with
Pearson's r2 (r2 = 0.845, p b 0.001, N = 9 due to large pixels) (10b) and its evaluation
via observed (Y axis = Sum_ReChl_Ug_L) vs. calculated Chl-a (Merissynthcichla)
concentration with Pearson's r2 (r2 = 0.845, p b 0.001, N = 9 due to large pixels)
(10c). Details of the synthetic bands and band math are available in Tables 1 and 2
respectively.
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of smaller inland water bodies, simple algorithms that ratio and there-
fore inherently normalize reflectance performed well and appear to be
relatively portable between most satellite imaging systems for the esti-
mation of Chl-a in smaller inland water bodies. Therefore, near-term
steps toward operational water quality monitoring systems for inland
water bodies smaller than a few kilometers across should focus
on Sentinel-2A and B and Landsat-8 with augmentation from
WorldView-2 and -3 when required. MERIS/OLCI may also be useful
for heavily masked time-series monitoring but will capture very little
of the spatial heterogeneity of Chl-a concentrations in smaller inland
water bodies.

Due to differing spatial and spectral resolutions and band locations
not all algorithms could be applied to all synthetic imagers. We were
able to apply two algorithms (NDCI and 2BDA) to all of the imagers
and one algorithm (3BDA) to five imagers. All three performed well.
NDCI is the most widely applicable algorithm and performs well with
all of the synthetic imaging systems except Landsat-8 for which the
new FLH Violet algorithm is recommended for the estimation of Chl-a
in smaller inland water bodies. Interestingly, the performance of NDCI
as measured by R2 values, with the band approximations used in this
study, improves from CASI (0.687) to synthetic WorldView-2/-3
(0.724) to synthetic Sentinel-2 (0.794) to synthetic MERIS (0.845) but
performs poorly with synthetic Landsat-8 (0.125) and synthetic
MODIS (0.301) imagery. The performance of 2BDA as measured by R2

values is similar when applied to CASI (0.717) and synthetic
WorldView-2/-3 (0.711) imagery and improves with synthetic
Sentinel-2 (0.799) and synthetic MERIS (0.843) imagery but also per-
forms poorly with synthetic Landsat-8 (0.156) and synthetic MODIS
(0.256) imagery. In contrast, 3BDA performed very well with CASI
(0.729) and synthetic WorldView-2/-3 (0.741) imagery, somewhat
more poorlywith synthetic Sentinel-2 (0.692) and betterwith synthetic
MERIS (0.832) imagery. The 3BDA algorithm also performed poorly
with synthetic Landsat-8 (0.158) imagery. Our results suggest that
spatial averaging generally improves performance of the NDCI, 2BDA
and 3BDA algorithms although the performance of large MERIS pixels
may be exaggerated in this study by the strong contrast in Chl-a concen-
tration between the eastern and western basins of Harsha Lake at the
time of CASI image acquisition (Fig. 4a). Sentinel-2 appears to have an
ideal combination of spatial and spectral resolutions for smaller inland
water bodies and performs well with both the NDCI and 2BDA algo-
rithms and continues to capture most of the spatial heterogeneity in
Chl-a concentrations observed with higher CASI and synthetic World-
View data.

In general, the strong performance of the simple NDCI, 2BDA and
3BDA algorithms appears to be related to their ratio components that
help to suppress variations in illumination and their exploitation of
the “veg edge” associated with Chl-a. This later quality makes them
amenable to many existing and near-future satellites designed to con-
trast the NIR and red contrast. The goal of this study was to evaluate
the performance of a variety of algorithms with specific current and
near-future imaging systems with specific combinations of spatial and
spectral resolution in preparation for an operational algal bloom moni-
toring system. Future efforts will explore the relationships of spatial and
spectral resolution on the performance of each algorithm individually.
These efforts will help us to understand why some algorithms perform
better than others.

These results address three of the research needs identified by
Graham (2006) by; 1) quantitatively evaluating tools for monitoring
algal blooms in general in temperate reservoirs; 2) contributing directly
to the long-term Harsha Lake/EFWCoop study of environmental factors
driving HAB formation and; 3) contributing to the development of
methods for early algal bloom detection and ultimately predictive
models for their formation in order to allow more time for resource
managers to respond to potentially harmful algal blooms.

Future satellite imaging systems for inlandwater qualitymonitoring
in water bodies smaller than a few kilometers will require spatial reso-
lutions of 30 m or finer to capture the spatial heterogeneity observed
during this experiment and spectral resolutions equal to or better than
Sentinel-2 if they are to leverage the shape metric algorithms for the
Chl-a peak near 710 nm. Interim systems such as PACE would add
much needed temporal resolution and could be useful for inland
water body algal bloom monitoring if their spatial resolutions were
90 m or finer and had narrow bands (b20 nm FWHM) at 620, 650 and
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710 nm. Such future systemswould have the advantage of using similar
physics and algorithms across a number of satellite imaging constella-
tions. Multiple constellations of imaging satellites totaling at least four
satelliteswill be necessary for operationalwater qualitymonitoring sys-
tems due to frequent cloud cover in mid-latitude temperate climates.
MERIS-like imagers with 300 m pixels may be able to detect changes
in Chl-a concentrations over wide areas between overpasses for water
bodies more than several pixels wide with heavy masking of shorelines
and islands and deserve further study. Hybrid systems composed of a
variety of imaging systems will benefit from atmospheric correction
(Gao, Montes, Davis, & Goetz, 2009) and require calibration and valida-
tion experiments for each type of satellite imaging systemonce they are
in orbit.

Author contributions

All authors played major roles in one of the most extensive coinci-
dent aircraft imaging, coincident surface observation and biogeochemi-
cal analysis campaigns for the evaluation of remote sensing algorithms
for the estimation of water quality to date.

Acknowledgments

This study was funded by the U.S. Army Corps of Engineers. The U.S.
Environmental Protection Agency and the Kentucky Department of En-
vironmental Protection, Division of Water provided valuable in-kind
services. Any use of trade, product, or firm names is for descriptive pur-
poses only and does not imply endorsement by the U.S. Government.
This article expresses only the personal views of the U.S. Army Corps
of Engineers employees listed as authors and does not necessarily re-
flect the official positions of the Corps or of the Department of the Army.

References

Alawadi, F. (2010). Detection of surface algal blooms using the newly developed algo-
rithm surface algal bloom index (SABI). Proceedings of SPIE, 7825. http://dx.doi.org/
10.1117/12.862096.

Allee, R. J., & Johnson, J. E. (1999). Use of satellite imagery to estimate surface chlorophyll
a and Secchi disc depth of Full Shoals Reservoir, Arkansas, USA. International Journal of
Remote Sensing, 20, 1057–1072.

American Public Health Association, American Water Works Association, & Water Envi-
ronment Federation (2012). Spectrophotometric determination of chlorophyll:
10200H.2. In E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (Eds.), Standard
methods for the examination of water and wastewater (22nd ed.) (10–23:10–24).

Augusto-Silva, P. B., Ogashawara, I., Barbosa, C. C. F., de Carvalho, L. A. S., Jorge, D. S. F.,
Fornari, C. I., & Stech, J. L. (2014). Analysis of MERIS reflectance algorithms for esti-
mating chlorophyll-a concentration in a Brazilian Reservoir. Remote Sensing, 6,
11689–117077.

Binding, C. E., Greenberg, T. A., & Bukata, R. P. (2013). The MERIS maximum chlorophyll
index; its merits and limitations for inland water algal bloom monitoring. Journal of
Great Lakes Research, 39, 100–107.

Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., & Brando, V. E. (2014). A
review of ocean color remote sensing methods and statistical techniques for the de-
tection, mapping and analysis of phytoplankton blooms in coastal and open oceans.
Progress in Oceanography, 123, 123–144.

Borge, N. H., & Mortensen, J. V. (2002). Deriving green crop area index and canopy
chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing
of Environment, 81, 45–57.

Brivio, P. A., Giardino, C., & Zilioli, E. (2001). Determination of chlorophyll concentration
changes in Lake Garda using an image-based radiative transfer code for Landsat TM
images. International Journal of Remote Sensing, 22, 487–502.

Cairns, S. H., Dickson, K. L., & Atkinson, S. F. (1997). An examination of measuring selected
water quality trophic indicators with SPOT satellite HRV data. Photogrammetric
Engineering and Remote Sensing, 63, 263–265.

Cannizzaro, J. P., & Carder, K. L. (2006). Estimating chlorophyll a concentrations
from remote-sensing reflectance in optically shallow waters. Remote Sensing of
Environment, 101, 13–24.

Chipman, J.W., Olmanson, L. G., & Gitelson, A. A. (2009). Remote sensingmethods for lake
management: A guide for resource managers and decision-makers. Developed by the
North American Lake Management Society in collaboration with Dartmouth College,
University of Minnesota, and University of Nebraska for the United States Environmental
Protection Agency.

Choubey, V. K. (1994). Monitoring water quality in reservoirs with IRS-1A-LISS-I. Water
Resources Management, 8, 121–136.
Dall'Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the
remote estimation of chlorophyll-a concentration in turbid productive waters:
Experimental results. Applied Optics, 44, 412–422.

Dall'Olmo, G., Gitelson, A. A., & Rundquist, D. C. (2003). Towards a unified approach for
remote estimation of chlorophyll-a in both terrestrial vegetation and turbid produc-
tive waters. Geophysical Research Letters, 30, 1038. http://dx.doi.org/10.1029/
2003GL018065.

Dekker, A. G., & Peters, S. W. (1993). The use of the thematic mapper for the analysis of
Eutrophic Lakes: A case study in The Netherlands. International Journal of Remote
Sensing, 14, 799–822.

DigitalGlobe (2009). WorldView-2 Data Sheet, 1–2.
DigitalGlobe (2014). WorldView-3 Data Sheet, 1–2.
Ekstrand, S. (1992). Landsat TM based quantification of chlorophyll-a during algae

blooms in coastal waters. International Journal of Remote Sensing, 13, 1913–1926.
European Space Agency (2012). MERIS Frequently Asked Questions, 1–20.
European Space Agency (2013). Sentinel-2 Data Sheet, 1–2.
Fraser, R. N. (1998). Hyperspectral remote sensing of turbidity and chlorophyll a among

Nebraska Sand Hills lakes. International Journal of Remote Sensing, 19, 1579–1589.
Frohn, R. C., & Autrey, B. C. (2009). Water quality assessment in the Ohio River using new

indices for turbidity and chlorophyll-a with Landsat-7 Imagery. Draft Internal Report,
U.S. Environmental Protection Agency.

Gao, B., Montes, M. J., Davis, C. O., & Goetz, A. H. (2009). Atmospheric correction algo-
rithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of
Environment, 113, S17–S24.

Giardino, C., Brando, V. E., Dekker, A. G., Strombeck, N., & Candiani, G. (2007). Assessment
of water quality in Lake Garda (Italy) using Hyperion. Remote Sensing of Environment,
109, 183–195.

Gitelson, A. A., Nikanorov, A.M., Sabo, G., & Szilagyi, F. (1986). Etude de la qualite des eaux
de surface par teledetection, monitoring to detect changes in water quality series.
Proceedings of the International Association of Hydrological Sciences, 157, 111–121.

Gitelson, A. A. (1992). The peak near 700 nm on reflectance spectra of algae and water:
Relationships of its magnitude and position with chlorophyll concentration.
International Journal of Remote Sensing, 13, 3367–3373.

Gitelson, A. A., Garbuzov, G., Szilagyi, F., Mittenzwey, K. H., Karnieli, A., & Kaiser, A. (1993).
Quantitative remote sensingmethods for real-timemonitoring of inlandwaters qual-
ity. International Journal of Remote Sensing, 14, 1269–1295.

Gitelson, A. A., Gritz, U., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll
content and spectral reflectance and algorithms for non-destructive chlorophyll as-
sessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.

Glasgow, H. B., Burkholder, J. M., Reed, R. E., Lewitus, A. J., & Kleinman, J. E. (2004). Real-
time remote monitoring of water quality: A review of current applications, and ad-
vancements in sensor technology, telemetry, and computing technologies. Journal
of Experimental Marine Biology and Ecology, 300, 409–448.

Gower, J., King, S., & Goncalves, P. (2008). Global monitoring of plankton blooms using
MERIS MCI. International Journal of Remote Sensing, 29, 6209–6216.

Graham, J. L. (2006). Harmful algal blooms. USGS Fact Sheet, 2006-3147.
Han, L., Rundquist, D. C., Liu, L. L., Fraser, R. N., & Schalles, J. F. (1994). The spectral re-

sponses of algal chlorophyll in water with varying levels of suspended sediment.
International Journal of Remote Sensing, 15, 3707–3718.

Hu, C., Barnes, B. B., Qi, L., & Crcoran, A. A. (2015). A harmful algal bloom of Karenia brevis
in the Northeastern Gulf of Mexico as revealed by MODIS and VIIRS: A comparison.
Sensors, 15, 2873–2887.

Hunter, P. D., Tyler, A. N., Willby, N. J., & Gilvear, D. J. (2008). The spatial dynamics of ver-
tical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study
using high spatial resolution time-series airborne remote sensing. Limnology and
Oceanography, 53, 2391–2406.

Jarecke, P. J., Barry, P., Pearlman, J., & Markham, B. L. (2001). Aggregation of hyperion
hyperspectral spectral bands into landsat-7 ETM+ spectral bands. In M. R. Descour,
& S. S. Shen (Eds.), Imaging Spectrometry VII. Proc. SPIE, 4480. (pp. 259–263).

Kallio, K. (2000). Remote sensing as a tool for monitoring lake water quality. In P.
Heinonen, G. Ziglio, & A. van der Beken (Eds.), Hydrological and limnological as-
pects of lake monitoring (pp. 237–245). Chichester, England: John Wiley & Sons,
Ltd.

Klemas, V. (2012). Remote sensing of algal blooms: An overview with case studies.
Journal of Coastal Research, 28(1A), 34–43.

Kneubuhler, M., Frank, T., Kellenberger, T. W., Pasche, N., & Schmid, M. (2007).
Mapping chlorophyll-a in Lake Kivu with remote sensing methods. Proceedings of
the Envisat Symposium 2007, Montreux, Switzerland 23–27 April 2007 (ESA SP-636,
July 2007).

Koponen, S., Pulliainen, J., Kallio, K., & Hallikainen, M. (2002). Lake water quality classifi-
cation with airborne hyperspectral spectrometer and simulated MERIS data. Remote
Sensing of Environment, 79, 51–59.

Kruse, F. A. (2004). Comparison of ATREM, ACORN, and FLAASH atmospheric corrections
using low-altitude AVIRIS data of Boulder. CO. Summaries of 13th JPL Airborne
Geoscience Workshop Pasadena CA: Jet Propulsion Lab.

Kudela, R. M., Palacios, S. L., Austerberry, D. C., Accorsi, E. K., Guild, L. S., & Torres-Perez, J.
(2015). Application of hyperspectral remote sensing to cyanobacterial blooms in in-
land waters. Remote Sensing of Environment, 1–10. http://dx.doi.org/10.1016/j.rse.
2015.01.025 (10 pp.).

LaPotin, P., Kennedy, R., Pangburn, T., & Bolus, R. (2001). Blended spectral classification
techniques for mapping water surface transparency and chlorophyll concentration.
Photogrammetric Engineering and Remote Sensing, 67, 1059–1065.

Lathrop, R. G., & Lillesand, T. M. (1986). Use of thematicmapper data to assess water qual-
ity in Green Bay and Central Lake Michigan. Photogrammetric Engineering and Remote
Sensing, 52, 671–680.

Lindsey, R., & Herring, D. (2001). Modis, 1–23.

http://dx.doi.org/10.1117/12.862096
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0010
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0010
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0010
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0015
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0015
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0015
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0020
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0020
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0020
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0030
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0030
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0030
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0030
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0035
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0035
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0035
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0045
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0045
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0045
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0050
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0050
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0050
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0055
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0055
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0055
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0055
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0055
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0060
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0060
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0065
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0065
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0065
http://dx.doi.org/10.1029/2003GL018065
http://dx.doi.org/10.1029/2003GL018065
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0075
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0075
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0075
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0080
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0090
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0090
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0095
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0100
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0105
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0105
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0110
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0110
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0110
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0115
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0115
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0115
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0125
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0125
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0125
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0135
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0135
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0135
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0140
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0140
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0150
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0150
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0150
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0160
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0160
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0165
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0170
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0170
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0170
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0180
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0180
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0180
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0180
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0185
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0185
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0185
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0185
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0190
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0190
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0190
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0190
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0195
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0195
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0200
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0200
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0200
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0205
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0205
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0205
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9000
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9000
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9000
http://dx.doi.org/10.1016/j.rse.2015.01.025
http://dx.doi.org/10.1016/j.rse.2015.01.025
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0220
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0220
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0220
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0225


30 R. Beck et al. / Remote Sensing of Environment 178 (2016) 15–30
Linkov, I., Satterstrom, F. K., Loney, D., & Steevans, J. A. (2009). The impact of harmful algal
blooms on USACE operations. ANSRP technical notes collection. ERDC/TN ansrp-09-1.
Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Matthews, A. M., Duncan, A. G., & Davison, R. G. (2001). An assessment of validation
techniques for estimating chlorophyll-a concentration from airborne multispectral
imagery. International Journal of Remote Sensing, 22, 429–447.

Mayo, M., Gitelson, A. A., Yacobi, Y. Z., & Ben-Avraham, Z. (1995). Chlorophyll distribution
in Lake Kinneret determined from Landsat thematic mapper data. International
Journal of Remote Sensing, 16, 175–182.

Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel
model for remote estimation of chlorophyll-a concentration in turbid productive
waters. Remote Sensing of Environment, 117, 394–406.

Mittenzwey, K. -H., Ulrich, S., Gitelson, A.‐. A., & Kondratiev, K. Y. (1992). Determination of
chlorophyll a of inland waters on the basis of spectral reflectance. Limnology and
Oceanography, 37, 147–149.

Morel, A., & Prieur, L. (1977). Analysis of variation in ocean color. Limnology and
Oceanography, 22, 709–722.

Mustard, J. F., Staid, M. I., & Fripp, W. J. (2001). A semianalytical approach to the cal-
ibration of AVIRIS data to reflectance over water application in a temperate estu-
ary. Remote Sensing of Environment, 75, 335–349.

Peltzer, E. T. (2015). Model 1 and model 2 regressions. http://www.mbari.org/staff/etp3/
regress.htm (Last updated 18 May 2009, last accessed, 27 April 2015)

Quibell, G. (1992). Estimation of chlorophyll concentrations using upwelling radiance
from different freshwater algal genera. International Journal of Remote Sensing, 13,
2611–2621.

Pinero, G., Perelman, S., Guerschman, J. P., & Paruleo, J. M. (2008). How to evaluate
models: Observed vs. predicted or predicted vs. observed. Ecological Modelling, 216,
316–322.

Reif, M. (2011). Remote sensing for inlandwater quality monitoring: A U.S. Army Corps of
Engineers Perspective. Engineer Research and Development Center/Environmental
Laboratory Technical Report (ERDC/EL TR)-11–13 (44 pp.).

Richter, R. (2008). Atmospheric / topographic correction for satellite imagery. DLR IB 565-01/
08, technical report Germany: DLR Wessling available online at http://www.rese.ch/
pdf/atcor23_manual.pdf

Rundquist, D. C., Han, L., Schalles, J. F., & Peake, J. S. (1996). Remote measurement of algal
chlorophyll in surface waters: The case for the first derivative of reflectance near
690 nm. Photogrammetric Engineering and Remote Sensing, 62, 195–200.

Sauer, M. J., Roesler, C. S., Werdell, P. J., & Barnard, A. (2012). Under the hood of satellite
empirical chlorophyll a algorithms: Revealing the dependencies of maximum band
ratio algorithms on inherent optical properties. Optics Express, 20, 1–15.

Sawaya, K. E., Olmanson, L. G., Heinert, N. J., Brezonik, P. L., & Bauer, M. E. (2003). Extend-
ing satellite remote sensing to local scales: land and water resource monitoring using
high-resolution imagery. Remote Sensing of Environment, 88(1–2), 144–156.

Schalles, J. F., Schiebe, F. R., Starks, P. J., & Troeger, W. W. (1997). Estimation of algal and
suspended sediment loads (singly and combined) using hyperspectral sensors and
integrated mesocosm experiments. Proc. Fourth Int. Conf. Remote Sensing Mar.
Coastal Environ., 17–19 March 1997, Orlando, Florida, 1. (pp. 247–258). Ann Arbor:
Environmental Research Institute of Michigan.

Schlapfer, D., Boerner, A., & Schaepman, M. (1999). The potential of spectral resampling
techniques for the simulation of APEX imagery based on AVIRIS data. NASA AVIRIS
Workshop, 1999, no. 53 (pp. 1–7).
Schlapfer, D., Schaepman, M., & Strobl, P. (2002). Impact of spatial resampling methods
on the radiometric accuracy of airborne imaging spectrometer data. Conference: 5th
Airborne Remote Sensing Conference and Exhibition, Miami/USA, 22–24 Mai.

Shafique, N. A., Autrey, B. C., Fulk, F., & Cormier, S. M. (2001). Hyperspectral narrow
wavebands selection for optimizing water quality monitoring on the Great Miami
River, Ohio. Journal of Spatial Hydrology, 1, 1–22.

Shen, L., Xu, H., & Guo, X. (2012). Satellite remote sensing of harmful algal blooms (HABs)
and a potential synthesized framework. Sensors, 12, 7778–7803.

Stumpf, R. P., & Tomlinson, M. (2005). Remote sensing of harmful algal blooms. Remote
sensing of coastal Aquatic environments. Springer, 277–296.

Stumpf, R. P., Wynne, T. T., Baker, D. B., & Fahnenstiel, G. L. (2012). Interannual variability
of cyanobacterial blooms in Lake Erie. PloS One, 7, 1–11.

Swayze, G. A., Clark, R. N., Goetz, A. F. H., Chrien, T. G., & Gorelick, N. S. (2003). Effects of
spectrometer band pass, sampling, and signal-to-noise ratio on spectrometer identi-
fication using the Tetracorder algorithm. Journal of Geophysical Research, 108(E9),
5105. http://dx.doi.org/10.1029/2002JE001975.

Thiemann, S. T., & Kaufmann, H. (2002). Lake water quality monitoring using
hyperspectral airborne data - A semiempirical multisensor and multitemporal ap-
proach for the Mecklenburg Lake District, Germany. Remote Sensing of Environment,
81, 228–237.

Thonfeld, F., Feilhauer, H., & Menz, G. (2012). Simulation of Sentinel-2 images from
hyperspectral data. Proceedings European Space Agency Conference (http://www.
congrexprojects.com/docs/12c04_docs2/poster2_43_thonfeld.pdf).

U.S. Environmental Protection Agency (USEPA) (2012). Cyanobacteria and cyanotoxins:
Information for drinking water systems. U.S. Environmental Protection Agency, Office
of Water (EPA-810F11001).

U.S. Geological Survey (2015). Landsat-8 (L8) Data Users Handbook, 1–98.
Verdin, J. P. (1985). Monitoring water quality conditions in a large western reservoir with

Landsat imagery. Photogrammetric Engineering and Remote Sensing, 51, 343–353.
Veryla, D. L. (1995). Satellite remote sensing of natural resources. CRC Lewis (199 pp.).
Vicory, A. (2009). Intergovernmental cooperation and public-private partnerships

for water quality management in the Ohio River Valley: The ORSANCO experience.
Michigan State University stormwater workshop, March 26, 2009.

Vos, W. L., Donze, M., & Bueteveld, H. (1986). On the reflectance spectrum of algae in
water: The nature of the peak at 700 nm and its shift with varying concentration.
Tech. Report, Communication on Sanitary Engineering and Water Management, Delft,
The Netherlands 86–22.

Wang, Y., Xia, H., Fu, J., & Sheng, G. (2004). Water quality change in reservoirs of Shenzen,
China: Detection using Landsat/TM data. The Science of the Total Environment, 328,
195–206.

Wynne, T. T., Stumpf, R. P., Tomlinson, M. C., & Dyble, J. (2012). Characterizing a
cyanobacterial bloom inwestern Lake Erie using satellite imagery andmeteorological
data. Limnology and Oceanography, 55, 2025–2036.

Zhao, D. Z., Xing, X. G., Liu, Y. G., Yang, J. H., &Wang, L. (2010). The relation of chlorophyll-
a concentration with the reflectance peak near 700 nm in algae-dominated waters
and sensitivity of fluorescence algorithms for detecting algal bloom. International
Journal of Remote Sensing, 31, 39–48.

http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0230
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0230
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0230
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0250
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0250
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0250
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0260
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0260
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0260
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0265
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0265
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0265
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0275
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0275
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9100
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9100
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9100
http://www.mbari.org/staff/etp3/regress.htm
http://www.mbari.org/staff/etp3/regress.htm
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0295
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0295
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0295
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0305
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0305
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0305
http://www.rese.ch/pdf/atcor23_manual.pdf
http://www.rese.ch/pdf/atcor23_manual.pdf
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0310
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0310
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0310
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0315
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0315
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0315
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf9300
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0325
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0325
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0325
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0330
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0330
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0330
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0340
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0340
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0340
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0345
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0345
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0350
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0350
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0355
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0355
http://dx.doi.org/10.1029/2002JE001975
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0365
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0365
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0365
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0365
http://www.congrexprojects.com/docs/12c04_docs2/poster2_43_thonfeld.pdf
http://www.congrexprojects.com/docs/12c04_docs2/poster2_43_thonfeld.pdf
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0375
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0375
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0375
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0380
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0390
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0390
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0385
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0395
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0395
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0395
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0400
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0400
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0400
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0400
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0415
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0415
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0415
http://refhub.elsevier.com/S0034-4257(16)30094-3/rf0415

	Comparison of satellite reflectance algorithms for estimating chlorophyll-�a in a temperate reservoir using coincident hype...
	1. Introduction
	2. Methods
	2.1. Study area
	2.2. Data sets
	2.3. Field campaign
	2.4. Airborne hyperspectral imagery acquisition and pre-processing
	2.5. Coincident surface observation procedures
	2.6. Synthetic satellite imagery
	2.7. Image analysis
	2.8. Combined error budget

	3. Results and discussion
	3.1. CASI imagery
	3.2. WorldView-2 (synthetic)
	3.3. Sentinel-2 (synthetic)
	3.4. Landsat-8 (synthetic)
	3.5. MODIS (synthetic)
	3.6. MERIS (synthetic)

	4. Conclusions
	Author contributions
	Acknowledgments
	References


